3.5.84 \(\int \frac {1}{x^4 (a+b x^3)^2 \sqrt {c+d x^3}} \, dx\) [484]

3.5.84.1 Optimal result
3.5.84.2 Mathematica [A] (verified)
3.5.84.3 Rubi [A] (verified)
3.5.84.4 Maple [A] (verified)
3.5.84.5 Fricas [A] (verification not implemented)
3.5.84.6 Sympy [F]
3.5.84.7 Maxima [F]
3.5.84.8 Giac [A] (verification not implemented)
3.5.84.9 Mupad [B] (verification not implemented)

3.5.84.1 Optimal result

Integrand size = 24, antiderivative size = 185 \[ \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=-\frac {b (2 b c-a d) \sqrt {c+d x^3}}{3 a^2 c (b c-a d) \left (a+b x^3\right )}-\frac {\sqrt {c+d x^3}}{3 a c x^3 \left (a+b x^3\right )}+\frac {(4 b c+a d) \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a^3 c^{3/2}}-\frac {b^{3/2} (4 b c-5 a d) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 a^3 (b c-a d)^{3/2}} \]

output
1/3*(a*d+4*b*c)*arctanh((d*x^3+c)^(1/2)/c^(1/2))/a^3/c^(3/2)-1/3*b^(3/2)*( 
-5*a*d+4*b*c)*arctanh(b^(1/2)*(d*x^3+c)^(1/2)/(-a*d+b*c)^(1/2))/a^3/(-a*d+ 
b*c)^(3/2)-1/3*b*(-a*d+2*b*c)*(d*x^3+c)^(1/2)/a^2/c/(-a*d+b*c)/(b*x^3+a)-1 
/3*(d*x^3+c)^(1/2)/a/c/x^3/(b*x^3+a)
 
3.5.84.2 Mathematica [A] (verified)

Time = 1.02 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.88 \[ \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {\frac {a \sqrt {c+d x^3} \left (-a^2 d+2 b^2 c x^3+a b \left (c-d x^3\right )\right )}{c (-b c+a d) x^3 \left (a+b x^3\right )}-\frac {b^{3/2} (4 b c-5 a d) \arctan \left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {-b c+a d}}\right )}{(-b c+a d)^{3/2}}+\frac {(4 b c+a d) \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{c^{3/2}}}{3 a^3} \]

input
Integrate[1/(x^4*(a + b*x^3)^2*Sqrt[c + d*x^3]),x]
 
output
((a*Sqrt[c + d*x^3]*(-(a^2*d) + 2*b^2*c*x^3 + a*b*(c - d*x^3)))/(c*(-(b*c) 
 + a*d)*x^3*(a + b*x^3)) - (b^(3/2)*(4*b*c - 5*a*d)*ArcTan[(Sqrt[b]*Sqrt[c 
 + d*x^3])/Sqrt[-(b*c) + a*d]])/(-(b*c) + a*d)^(3/2) + ((4*b*c + a*d)*ArcT 
anh[Sqrt[c + d*x^3]/Sqrt[c]])/c^(3/2))/(3*a^3)
 
3.5.84.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.15, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {948, 114, 27, 168, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 948

\(\displaystyle \frac {1}{3} \int \frac {1}{x^6 \left (b x^3+a\right )^2 \sqrt {d x^3+c}}dx^3\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {1}{3} \left (-\frac {\int \frac {3 b d x^3+4 b c+a d}{2 x^3 \left (b x^3+a\right )^2 \sqrt {d x^3+c}}dx^3}{a c}-\frac {\sqrt {c+d x^3}}{a c x^3 \left (a+b x^3\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (-\frac {\int \frac {3 b d x^3+4 b c+a d}{x^3 \left (b x^3+a\right )^2 \sqrt {d x^3+c}}dx^3}{2 a c}-\frac {\sqrt {c+d x^3}}{a c x^3 \left (a+b x^3\right )}\right )\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{3} \left (-\frac {\frac {\int \frac {b d (2 b c-a d) x^3+(b c-a d) (4 b c+a d)}{x^3 \left (b x^3+a\right ) \sqrt {d x^3+c}}dx^3}{a (b c-a d)}+\frac {2 b \sqrt {c+d x^3} (2 b c-a d)}{a \left (a+b x^3\right ) (b c-a d)}}{2 a c}-\frac {\sqrt {c+d x^3}}{a c x^3 \left (a+b x^3\right )}\right )\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{3} \left (-\frac {\frac {\frac {(b c-a d) (a d+4 b c) \int \frac {1}{x^3 \sqrt {d x^3+c}}dx^3}{a}-\frac {b^2 c (4 b c-5 a d) \int \frac {1}{\left (b x^3+a\right ) \sqrt {d x^3+c}}dx^3}{a}}{a (b c-a d)}+\frac {2 b \sqrt {c+d x^3} (2 b c-a d)}{a \left (a+b x^3\right ) (b c-a d)}}{2 a c}-\frac {\sqrt {c+d x^3}}{a c x^3 \left (a+b x^3\right )}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{3} \left (-\frac {\frac {\frac {2 (b c-a d) (a d+4 b c) \int \frac {1}{\frac {x^6}{d}-\frac {c}{d}}d\sqrt {d x^3+c}}{a d}-\frac {2 b^2 c (4 b c-5 a d) \int \frac {1}{\frac {b x^6}{d}+a-\frac {b c}{d}}d\sqrt {d x^3+c}}{a d}}{a (b c-a d)}+\frac {2 b \sqrt {c+d x^3} (2 b c-a d)}{a \left (a+b x^3\right ) (b c-a d)}}{2 a c}-\frac {\sqrt {c+d x^3}}{a c x^3 \left (a+b x^3\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{3} \left (-\frac {\frac {\frac {2 b^{3/2} c (4 b c-5 a d) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{a \sqrt {b c-a d}}-\frac {2 (b c-a d) (a d+4 b c) \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{a \sqrt {c}}}{a (b c-a d)}+\frac {2 b \sqrt {c+d x^3} (2 b c-a d)}{a \left (a+b x^3\right ) (b c-a d)}}{2 a c}-\frac {\sqrt {c+d x^3}}{a c x^3 \left (a+b x^3\right )}\right )\)

input
Int[1/(x^4*(a + b*x^3)^2*Sqrt[c + d*x^3]),x]
 
output
(-(Sqrt[c + d*x^3]/(a*c*x^3*(a + b*x^3))) - ((2*b*(2*b*c - a*d)*Sqrt[c + d 
*x^3])/(a*(b*c - a*d)*(a + b*x^3)) + ((-2*(b*c - a*d)*(4*b*c + a*d)*ArcTan 
h[Sqrt[c + d*x^3]/Sqrt[c]])/(a*Sqrt[c]) + (2*b^(3/2)*c*(4*b*c - 5*a*d)*Arc 
Tanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(a*Sqrt[b*c - a*d]))/(a*( 
b*c - a*d)))/(2*a*c))/3
 

3.5.84.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 
3.5.84.4 Maple [A] (verified)

Time = 4.80 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.03

method result size
pseudoelliptic \(\frac {-4 x^{3} c^{\frac {5}{2}} \left (b c -\frac {5 a d}{4}\right ) b^{2} \left (b \,x^{3}+a \right ) \arctan \left (\frac {b \sqrt {d \,x^{3}+c}}{\sqrt {\left (a d -b c \right ) b}}\right )+\left (c \,x^{3} \left (b \,x^{3}+a \right ) \left (a d +4 b c \right ) \left (a d -b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )+c^{\frac {3}{2}} \left (2 b^{2} c \,x^{3}+a \left (-d \,x^{3}+c \right ) b -a^{2} d \right ) a \sqrt {d \,x^{3}+c}\right ) \sqrt {\left (a d -b c \right ) b}}{3 \sqrt {\left (a d -b c \right ) b}\, a^{3} \left (a d -b c \right ) \left (b \,x^{3}+a \right ) c^{\frac {5}{2}} x^{3}}\) \(191\)
risch \(-\frac {\sqrt {d \,x^{3}+c}}{3 c \,a^{2} x^{3}}-\frac {-\frac {2 \left (a d +4 b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3 a \sqrt {c}}-\frac {2 b^{2} c \left (d \arctan \left (\frac {b \sqrt {d \,x^{3}+c}}{\sqrt {\left (a d -b c \right ) b}}\right ) \left (b \,x^{3}+a \right )+\sqrt {d \,x^{3}+c}\, \sqrt {\left (a d -b c \right ) b}\right )}{3 \sqrt {\left (a d -b c \right ) b}\, \left (a d -b c \right ) \left (b \,x^{3}+a \right )}-\frac {8 b^{2} c \arctan \left (\frac {b \sqrt {d \,x^{3}+c}}{\sqrt {\left (a d -b c \right ) b}}\right )}{3 a \sqrt {\left (a d -b c \right ) b}}}{2 c \,a^{2}}\) \(199\)
default \(\frac {-\frac {\sqrt {d \,x^{3}+c}}{3 c \,x^{3}}+\frac {d \,\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3 c^{\frac {3}{2}}}}{a^{2}}+\frac {4 b \,\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3 a^{3} \sqrt {c}}+\frac {b^{2} \left (d \arctan \left (\frac {b \sqrt {d \,x^{3}+c}}{\sqrt {\left (a d -b c \right ) b}}\right ) \left (b \,x^{3}+a \right )+\sqrt {d \,x^{3}+c}\, \sqrt {\left (a d -b c \right ) b}\right )}{3 a^{2} \sqrt {\left (a d -b c \right ) b}\, \left (a d -b c \right ) \left (b \,x^{3}+a \right )}+\frac {4 b^{2} \arctan \left (\frac {b \sqrt {d \,x^{3}+c}}{\sqrt {\left (a d -b c \right ) b}}\right )}{3 a^{3} \sqrt {\left (a d -b c \right ) b}}\) \(206\)
elliptic \(\text {Expression too large to display}\) \(1733\)

input
int(1/x^4/(b*x^3+a)^2/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/3/((a*d-b*c)*b)^(1/2)*(-4*x^3*c^(5/2)*(b*c-5/4*a*d)*b^2*(b*x^3+a)*arctan 
(b*(d*x^3+c)^(1/2)/((a*d-b*c)*b)^(1/2))+(c*x^3*(b*x^3+a)*(a*d+4*b*c)*(a*d- 
b*c)*arctanh((d*x^3+c)^(1/2)/c^(1/2))+c^(3/2)*(2*b^2*c*x^3+a*(-d*x^3+c)*b- 
a^2*d)*a*(d*x^3+c)^(1/2))*((a*d-b*c)*b)^(1/2))/a^3/(a*d-b*c)/(b*x^3+a)/c^( 
5/2)/x^3
 
3.5.84.5 Fricas [A] (verification not implemented)

Time = 0.41 (sec) , antiderivative size = 1236, normalized size of antiderivative = 6.68 \[ \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\text {Too large to display} \]

input
integrate(1/x^4/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")
 
output
[1/6*(((4*b^3*c^3 - 5*a*b^2*c^2*d)*x^6 + (4*a*b^2*c^3 - 5*a^2*b*c^2*d)*x^3 
)*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d - 2*sqrt(d*x^3 + c)*(b*c 
- a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)) + ((4*b^3*c^2 - 3*a*b^2*c*d - a^2 
*b*d^2)*x^6 + (4*a*b^2*c^2 - 3*a^2*b*c*d - a^3*d^2)*x^3)*sqrt(c)*log((d*x^ 
3 + 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 2*(a^2*b*c^2 - a^3*c*d + (2*a* 
b^2*c^2 - a^2*b*c*d)*x^3)*sqrt(d*x^3 + c))/((a^3*b^2*c^3 - a^4*b*c^2*d)*x^ 
6 + (a^4*b*c^3 - a^5*c^2*d)*x^3), -1/6*(2*((4*b^3*c^3 - 5*a*b^2*c^2*d)*x^6 
 + (4*a*b^2*c^3 - 5*a^2*b*c^2*d)*x^3)*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d* 
x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) - ((4*b^3*c^2 - 
 3*a*b^2*c*d - a^2*b*d^2)*x^6 + (4*a*b^2*c^2 - 3*a^2*b*c*d - a^3*d^2)*x^3) 
*sqrt(c)*log((d*x^3 + 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) + 2*(a^2*b*c^2 
 - a^3*c*d + (2*a*b^2*c^2 - a^2*b*c*d)*x^3)*sqrt(d*x^3 + c))/((a^3*b^2*c^3 
 - a^4*b*c^2*d)*x^6 + (a^4*b*c^3 - a^5*c^2*d)*x^3), -1/6*(2*((4*b^3*c^2 - 
3*a*b^2*c*d - a^2*b*d^2)*x^6 + (4*a*b^2*c^2 - 3*a^2*b*c*d - a^3*d^2)*x^3)* 
sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) - ((4*b^3*c^3 - 5*a*b^2*c^2*d) 
*x^6 + (4*a*b^2*c^3 - 5*a^2*b*c^2*d)*x^3)*sqrt(b/(b*c - a*d))*log((b*d*x^3 
 + 2*b*c - a*d - 2*sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 
 + a)) + 2*(a^2*b*c^2 - a^3*c*d + (2*a*b^2*c^2 - a^2*b*c*d)*x^3)*sqrt(d*x^ 
3 + c))/((a^3*b^2*c^3 - a^4*b*c^2*d)*x^6 + (a^4*b*c^3 - a^5*c^2*d)*x^3), - 
1/3*(((4*b^3*c^3 - 5*a*b^2*c^2*d)*x^6 + (4*a*b^2*c^3 - 5*a^2*b*c^2*d)*x...
 
3.5.84.6 Sympy [F]

\[ \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {1}{x^{4} \left (a + b x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \]

input
integrate(1/x**4/(b*x**3+a)**2/(d*x**3+c)**(1/2),x)
 
output
Integral(1/(x**4*(a + b*x**3)**2*sqrt(c + d*x**3)), x)
 
3.5.84.7 Maxima [F]

\[ \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{2} \sqrt {d x^{3} + c} x^{4}} \,d x } \]

input
integrate(1/x^4/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")
 
output
integrate(1/((b*x^3 + a)^2*sqrt(d*x^3 + c)*x^4), x)
 
3.5.84.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.39 \[ \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {{\left (4 \, b^{3} c - 5 \, a b^{2} d\right )} \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{3 \, {\left (a^{3} b c - a^{4} d\right )} \sqrt {-b^{2} c + a b d}} - \frac {2 \, {\left (d x^{3} + c\right )}^{\frac {3}{2}} b^{2} c d - 2 \, \sqrt {d x^{3} + c} b^{2} c^{2} d - {\left (d x^{3} + c\right )}^{\frac {3}{2}} a b d^{2} + 2 \, \sqrt {d x^{3} + c} a b c d^{2} - \sqrt {d x^{3} + c} a^{2} d^{3}}{3 \, {\left (a^{2} b c^{2} - a^{3} c d\right )} {\left ({\left (d x^{3} + c\right )}^{2} b - 2 \, {\left (d x^{3} + c\right )} b c + b c^{2} + {\left (d x^{3} + c\right )} a d - a c d\right )}} - \frac {{\left (4 \, b c + a d\right )} \arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{3 \, a^{3} \sqrt {-c} c} \]

input
integrate(1/x^4/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="giac")
 
output
1/3*(4*b^3*c - 5*a*b^2*d)*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/( 
(a^3*b*c - a^4*d)*sqrt(-b^2*c + a*b*d)) - 1/3*(2*(d*x^3 + c)^(3/2)*b^2*c*d 
 - 2*sqrt(d*x^3 + c)*b^2*c^2*d - (d*x^3 + c)^(3/2)*a*b*d^2 + 2*sqrt(d*x^3 
+ c)*a*b*c*d^2 - sqrt(d*x^3 + c)*a^2*d^3)/((a^2*b*c^2 - a^3*c*d)*((d*x^3 + 
 c)^2*b - 2*(d*x^3 + c)*b*c + b*c^2 + (d*x^3 + c)*a*d - a*c*d)) - 1/3*(4*b 
*c + a*d)*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(a^3*sqrt(-c)*c)
 
3.5.84.9 Mupad [B] (verification not implemented)

Time = 15.99 (sec) , antiderivative size = 355, normalized size of antiderivative = 1.92 \[ \int \frac {1}{x^4 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {\sqrt {d\,x^3+c}\,\left (\frac {d\,a^2+4\,b\,c\,a}{2\,a^3\,c^2}-\frac {a\,\left (\frac {2\,c\,b^2+2\,a\,d\,b}{2\,a^3\,c^2}-\frac {a\,\left (\frac {b^2\,d}{2\,a^3\,c^2}+\frac {b\,\left (2\,c\,b^2+2\,a\,d\,b\right )\,\left (3\,a\,d-4\,b\,c\right )}{6\,a^3\,c^2\,\left (a^2\,d-a\,b\,c\right )}-\frac {b^2\,d\,\left (3\,a\,d-4\,b\,c\right )}{6\,a^2\,c^2\,\left (a^2\,d-a\,b\,c\right )}\right )}{b}+\frac {b\,\left (d\,a^2+4\,b\,c\,a\right )\,\left (3\,a\,d-4\,b\,c\right )}{6\,a^3\,c^2\,\left (a^2\,d-a\,b\,c\right )}\right )}{b}\right )}{b\,x^3+a}-\frac {\sqrt {d\,x^3+c}}{3\,a^2\,c\,x^3}+\frac {\ln \left (\frac {\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )\,{\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )}^3}{x^6}\right )\,\left (a\,d+4\,b\,c\right )}{6\,a^3\,c^{3/2}}+\frac {b^{3/2}\,\ln \left (\frac {2\,b\,c-a\,d+b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,\left (5\,a\,d-4\,b\,c\right )\,1{}\mathrm {i}}{6\,a^3\,{\left (a\,d-b\,c\right )}^{3/2}} \]

input
int(1/(x^4*(a + b*x^3)^2*(c + d*x^3)^(1/2)),x)
 
output
((c + d*x^3)^(1/2)*((a^2*d + 4*a*b*c)/(2*a^3*c^2) - (a*((2*b^2*c + 2*a*b*d 
)/(2*a^3*c^2) - (a*((b^2*d)/(2*a^3*c^2) + (b*(2*b^2*c + 2*a*b*d)*(3*a*d - 
4*b*c))/(6*a^3*c^2*(a^2*d - a*b*c)) - (b^2*d*(3*a*d - 4*b*c))/(6*a^2*c^2*( 
a^2*d - a*b*c))))/b + (b*(a^2*d + 4*a*b*c)*(3*a*d - 4*b*c))/(6*a^3*c^2*(a^ 
2*d - a*b*c))))/b))/(a + b*x^3) - (c + d*x^3)^(1/2)/(3*a^2*c*x^3) + (log(( 
((c + d*x^3)^(1/2) - c^(1/2))*((c + d*x^3)^(1/2) + c^(1/2))^3)/x^6)*(a*d + 
 4*b*c))/(6*a^3*c^(3/2)) + (b^(3/2)*log((2*b*c - a*d + b^(1/2)*(c + d*x^3) 
^(1/2)*(a*d - b*c)^(1/2)*2i + b*d*x^3)/(a + b*x^3))*(5*a*d - 4*b*c)*1i)/(6 
*a^3*(a*d - b*c)^(3/2))